
Sequent’s NUMA-QTM

SMP Architecture

How it works and where it fits in high-performance computer architectures

Contents

Introduction .. 1

Background terms and technologies.. 1

Latency, the key differentiator .. 10

How NUMA-Q works .. 12

NUMA-Q memory configuration .. 12

Cache coherence in NUMA-Q.. 14

Optimizing software for NUMA-Q .. 15

Memory latencies in NUMA-Q .. 15

IQ-Link bus bandwidth.. 16

Summary .. 17

Additional information .. 17

References .. 18

Introduction
The first white paper on Sequent’s new
high-performance computer architec-
ture, Sequent’s NUMA-Q™ Architecture,
explained the basic components of this
new approach to symmetric multipro-
cessing (SMP) computing. This document
offers more detail on how NUMA-Q
works and why SMP applications can
run on it unchanged, with higher
performance than on any other SMP
platform on the market today. It also
differentiates the NUMA-Q architec-
ture from related technologies such as
Replicated Memory Clusters and other
forms of Non-Uniform Memory Access,
such as NUMA and CC-NUMA. It
explains why single-backplane “big-
bus” SMP architectures are reaching
the limits of their usefulness and why
the NUMA-Q SMP architecture is the
best solution to high-end commercial
computing for the rest of this decade
and beyond.

Background terms and
technologies
Because there has been so much talk in
the press about NUMA (Non-Uniform
Memory Access) architectures, it is
necessary to distinguish between the
original NUMA and recent offshoots:
cache-coherent NUMA (CC-NUMA),
Replicated Memory Clusters (RMC),
Cache-Only Memory Architecture
(COMA) and, most recently, Sequent’s
NUMA-Q (NUMA using quads). It is

also useful to go over the basics of
Symmetric Multiprocessing (SMP)
computing, clustered computing,
Massively Parallel Processing (MPP),
and other high-speed computer archi-
tectures, to appreciate what Sequent’s
NUMA-Q architecture brings to the table.

A node is a computer consisting of
one or more processors with related
memory and I/O. Each node requires a
single copy, or instance, of the operating
system (OS).

A Symmetrical Multiprocessing (SMP)
node contains two or more identical
processors, with no master/slave division
of processing. Each processor has equal
access to the computing resources of
the node. Thus, the processors and the
processing are said to be symmetrical
(see Figure 1). Each SMP node runs just
one copy of the OS. This means the
interconnection between processors and
memory inside the node must utilize an
interconnection scheme that maintains
coherency. Coherency means that, at any
time, there is only one possible value
held uniquely or shared among the
processor for every datum in memory.

Coherency is not a problem for com-
puters with only one processor, because
each datum can only be modified by
the one processor at any moment. In
multiprocessor systems, however, many
different processors could be attempting

CPU CPU CPU CPU
CPU CPU CPU CPU

CPU

I/OMemory

One OS Instance = One Node

CPU CPU CPU

COMM

One System, One Node

Figure 1: A single SMP node with 12 processors
1

to modify that single datum or holding
their own copies of it in their caches at
the same instant. Coherency, whether
implemented in hardware or in soft-
ware, is required to prevent multiple
processors from trying to modify the
same datum at the same instant. Inside
an SMP node, the hardware ensures
that write operations on the same datum
are serialized. Additionally, the hard-
ware must ensure that stale copies of
data are removed. Hardware coherency
is a requirement for an SMP machine
running a single instance of the OS
over multiple CPUs.

To get the best performance out of
SMP nodes, the coherency must have
low latency and high efficiency. SMP
systems have up until now, had a maxi-
mum of 12 to 32 processors per node,
because the requirement for a low
latency, coherent interconnect mandated
a single backplane. This puts a physical
limit on how many processors and
memory boards can be attached.
Therefore, from a purely hardware
perspective, growing a system larger
than 32 processors required connecting
nodes using slower software instead of
hardware coherency techniques and
suffering a dramatic change in program-
ming and performance characteristics.

SMP nodes are very attractive to devel-
opers applications, because the OS does
a great deal of the work in scaling per-
formance and utilizing resources as they
are added. The application does not
have to change as more processors are
added. In addition, the application
doesn’t need to care which CPU(s) it
runs on. Latency to all parts of memory
and I/O are the same from any CPU.
The application developer sees a uni-
form address space. It is this latter
point, and the fact that SMP architec-
tures from different vendors look fun-
damentally the same, that simplifies
software porting in SMP systems.
Software portability continues to be
one of the major advantages of SMP
platforms. As an interesting aside, the
latency-to-memory is mitigated with

large caches on each CPU. Many soft-
ware applications actually tune their
performance by improving their cache
hit rate. Nonetheless, once a cache miss
takes place, the average latency-to-
memory is the same, regardless of what
CPU incurred the miss.

It is also relatively easy to extract maxi-
mum performance from SMP systems,
while t is still difficult to program clus-
ters of small nodes to work together on
the same problem—another key reason
why a single very large node is more
attractive than a collection of clustered
small nodes. Within a single node, com-
munication between the CPUs and
memory is usually in the one to four-
microsecond range. Data is shared by
different CPUs through the global
shared memory.

The typical SMP architecture employs
a “snoopy bus” as the hardware mech-
anism to maintain coherency. A snoopy
bus can be compared to a party-line
telephone system. Each processor has
its own local cache, where it keeps a
copy of a small portion of the main
memory that the processor is most likely
to need to access (this greatly enhances
performance of the processor). To keep
the contents of memory coherent
between all the processors’ caches, each
processor “snoops” on the bus, looking
for reads and writes between other
processors and main memory that
affect the contents of its own cache.
If processor B requests a portion of
memory that processor A is holding,
processor A preempts the request and
puts its value for the memory region
on the bus, where B reads it. If processor
A writes a changed value back from its
cache to memory, then all other proces-
sors see the write go past on the bus
and purge the now obsolete value from
their own caches, and so forth. This
maintains coherency between all the
processors’ caches.

There are some variants on the single-
bus SMP node shown in Figure 1. A
large coherent SMP node can be built

2

with more than one system bus, but this
entails inevitable cost and manageability
trade-offs. NCR has implemented a
dual-bus structure with a single memory
shared between buses. Coherency is
managed by keeping a record of the
state and location of each block of data
in the central memory. This type of
caching is called directory-based caching
and has the advantage in this case of
having double the amount of bus band-
width. The disadvantages include more
complex memory hardware and the
additional latency for memory transfers
spanning both buses.

The Cray® SuperServer 6400 SMP archi-
tecture uses four buses. All the CPUs are
simultaneously attached to all four buses
and implement “snoopy cache” protocols
to maintain coherency. Snoopy cache is
a hardware caching mechanism whereby
all CPUs “snoop” all activity on the
buses and check to see if it affects their
cache contents. Each CPU is responsible
for tracking the contents of only its own
cache. This differs from directory-based
caching protocols in that the latter uses a
directory to look up the state and loca-
tion of cache lines. This directory can be
centrally located or dispersed between
the CPUs, with each having a unique
portion of the directory. In the Cray
6400 with four buses and snoopy cache,
there is the potential for four times the
bus bandwidth, but an obvious draw-
back is that you must use four times
the hardware on every CPU to maintain
coherency.

The new Sun® Ultra Enterprise 6000
uses a switch to connect all CPUs,
memory, and I/O. This switch replaces
the traditional backplane but essentially
serves the same function. It also has the
same drawbacks in that all memory,
CPU, and I/O traffic must pass through
the switch. The system supports just
16 slots for the CPU/memory and
I/O boards. While this new switch has
increased the bus bandwidth somewhat,
the big-bus problems remain: the require-
ment for low latency constrains these
architectures to a small number of

connected CPUs, and increases in the
bus or switch speed cannot match
the rate at which the CPUs increase
performance.

Massively Parallel Processing (MPP or
“shared nothing”) nodes traditionally
consist of a single CPU, a small amount
of memory, some I/O, a custom inter-
connect between nodes, and one
instance of the OS for each node.
The interconnect between nodes (and
therefore between instances of the OS
residing on each of the nodes) does not
require hardware coherency, because
each node has its own OS and, there-
fore, its own unique physical memory
address space. Coherency is, therefore,
implemented in software via message-
passing.

Messaged-based software coherency
latencies are typically hundreds to thou-
sands of times slower than hardware
coherency latencies. On the other hand,
they are also much less expensive to
implement. In a sense, MPPs sacrifice
latency to achieve connectivity of greater
numbers of processors. This gives MPP
computers the opportunity to connect
hundreds or even thousands of nodes.

MPP performance is notoriously sensitive
to the latency incurred by the software
message-passing protocol and the under-
lying hardware medium for the messages
(be it a switch or a mesh or a network).
In general, performance-tuning of MPPs
involves partitioning the data to minimize
the amount of data that must be passed
between the nodes. Applications that
have a natural partitioning in the data
run well on large MPPs—a video-on-
demand application, for example.

Figure 2 shows a four-node MPP system.
In MPP systems, a node is also called a
cell or a plex. The current trend for
MPPs is to make the power of the node
greater by adding multiple processors,
essentially turning it into it an SMP
node. This is what NCR offers with
its Bynet interconnect and Tandem
with its ServerNet. Pyramid has also

3

suggested that its Meshine interconnect
can be used to connect its SMP platforms
as well as its single-CPU cells. The node
operating system in MPPs is likely to be
a scaled-down version called a microkernel.

MPP architectures are attractive to hard-
ware developers, because they present
simpler problems to solve and cost less
to develop. Because there is no hardware
support for shared memory or cache
coherency, connecting large numbers
of processors is straightforward. These
systems have been shown to provide
high levels of performance for compute-
intensive applications with statically
partitionable data and minimal require-
ments for node-to-node communication.
They are not attractive to application
developers, however, the complexity of
managing the message between cells and
dividing up the application to maximize
performance is frequently overwhelming.
Most commercial applications are not

well-suited to MPP, as database structure
changes over time and the overhead of
re-partitioning data to avoid hot spots
is too great in a continuously available
environment.

The key difference between a single SMP
node and an MPP system is that, within
the SMP node, the data coherence is
managed exclusively in hardware. This
is indeed fast but also expensive. In an
MPP system with a similar number of
processors, the coherence between the
nodes is managed by the software. It is,
therefore, slower but much less expen-
sive. You must manage the traffic
between nodes so that it doesn’t
become a performance inhibitor.

The most effective way to manage this
flow of data between nodes is to parti-
tion the data (i.e., try to put the data
close to the node that is most likely to
use it) most of the time. Data sharing

Figure 2: A four-node MPP system

CPU

NIC

I/O

Mem

One OS Instance
 = One Node or Cell

One MPP System, With Four Nodes/Cells

Msgs

Msgs Msgs

CPU

NIC

I/O

Mem

One OS Instance
 = One Node or Cell

Msgs

CPU

NIC

I/O

Mem

One OS Instance
 = One Node or Cell

Msgs

Msgs

Msgs

Msgs

CPU

NIC

I/O

Mem

One OS Instance
 = One Node or Cell

4

is fundamental to Online Transaction
Processing (OLTP) applications. All
users want to share data as quickly as
possible, preferably in memory. To
force OLTP users to partition data is to
severely limit performance. This is why
MPP systems are rarely proposed for
OLTP applications. MPPs have the
potential to work better for Decision
Support Systems (DSS), although DSS
queries have a tendency to serialize,
because each step of the query may
access a different data partition. This
requires a large amount of interconnect
bandwidth between nodes.

The bulk of the inter-node traffic in an
MPP system is not coherency messages
but rather shared data. The sharing of
data between processors inside an SMP
node requires no data movement, since
all processors access the same shared
memory. When data must be shared
between multiple memories found in
multiple nodes, the data must be repli-
cated or transferred from one memory
to another. Repeated processor accesses
to data in the memory of a different
node simply takes too long. This makes
data sharing between nodes slow and
difficult, at best, and explains why
MPP systems perform best for statically

partitioned processing (cases where the
contents of the database don’t change
frequently). Unfortunately for MPPs,
in commercial markets, problems with
statically partitioned data are rare.

A cluster (or clustered system) consists
of two or more nodes with the following
requirements: (a) each is running its own
copy of the OS, (b) each is running its
own copy of the application, and (c) the
nodes share a common pool of other
resources, such as disk drives and possibly
tape drives (see Figure 3). Contrast to
this, MPP systems, in which nodes do
not share storage resources. This is the
primary difference between clustered SMP
systems and traditional MPP systems.

It is important to note that in a cluster
the separate instances of the application
must be aware of each other—and must
execute locks to maintain coherency
within the database—before attempting
to update any part of the common pool
of storage (the database). It is this
requirement that makes clusters more
difficult to manage and scale than a
single SMP node. However, clusters offer
several advantages in return: continuous
application availability and superior
performance.

Figure 3: A two-node SMP clustered system

CPU CPU CPU CPU
CPU CPU CPU CPU

CPU

I/OMemory

One OS Instance = One Node

Lock Messages

CPU CPU CPU

COMM

Shared Disk

One Clustered System, With Two Nodes

CPU CPU CPU CPU
CPU CPU CPU CPU

CPU

I/OMemory

One OS Instance = One Node

CPU CPU CPU

COMMI/O

5

Getting additional performance from
clusters is more difficult than scaling
within a node. A key barrier is the cost
of communicating outside the single-
node environment. Communication that
passes outside a node must endure the
long latencies of software coherency.
Applications with lots of interprocess
communication work better inside SMP
nodes, because communication is very
fast. Applications scale more efficiently
in both clusters and MPP systems when
you reduce the need for communication
between processes that span nodes. This
generally involves data partitioning. OPS
(Oracle® Parallel Server), the most widely
known cluster-ready application, uses
this approach.

A failover configuration generally consists
of a cluster running specialized software.
The application is not being used simul-
taneously on both nodes but rather one
node is set up to fail over to another in
the event of a crash. This is not a true
cluster but is best described as a fail-
over configuration of multiple systems.
Applications do not need to be pro-
grammed for clusters, since only one
instance of the application is ever active.
In a failover configuration, you only get
the performance of a single node at a

time. Also, the application may be
unavailable for a short time while the
failover is in progress.

A system. To avoid confusion, one
should not speak in terms of systems but
of nodes. A system can consist of one or
more nodes. When a system has two or
more nodes that simultaneously share a
common pool of storage, it is a clustered
system. Note that a clustered system
consisting of multiple nodes (each running
a unique copy of the OS and the appli-
cation) is considered a single system.
Too often the industry refers to a system
as a single-node system, while a clustered
system and an MPP system are used to
denote specific multi-node systems.

A Replicated memory cluster (RMC) is
a clustered system with a memory repli-
cation or memory transfer mechanism
between nodes and a lock traffic inter-
connect (see Figure 4). Memory transfers
are performed using software coherency
techniques. RMC systems provide faster
message-passing to applications and
relieve the individual nodes from having
to go out to disk to get the same pages
of memory. On an RMC system, getting
data from memory in other nodes is
hundreds of times faster than returning

CPU CPU CPU CPU
CPU CPU CPU CPU

CPU

I/OMemory

One OS instance = One Node

Lock Messages

CPU CPU CPU

COMM

CPU CPU CPU CPU
CPU CPU CPU CPU

CPU

I/OMemory

One OS Instance = One Node

Shared Disk

Memory To Memory Transfers

CPU CPU CPU

COMM

One Replicated Memory Clustered System (RMC), With Two Nodes: NU

Figure 4: A Replicated Memory Cluster (RMC) system with two SMP nodes.6

to disk for it. Clearly, the performance
boost will only be realized if there is a
need for the nodes to share data, and the
application is able to take advantage of
it. RMCs are faster than traditional net-
worked-based message-passing because,
once a connection is established, a mes-
sage can be passed from the application
code without the intervention of the
operating system. Examples of this type
of technology are Sequent’s Scalable
Data Interconnect (SDI), DEC’s Memory
Channel on the TruCluster, and Tandem’s
ServerNet. This memory-to-memory
transfer is similar to the interconnects
between MPP nodes and serves a similar
function.

Some vendors use the term “NUMA” to
describe their RMC systems, while some
journalists have used the term “shared
memory clusters” (SMC) to describe
both NUMA and RMC. SMG is a poor
descriptor, as it is easily confused with
the shared memory inside SMP nodes.
“Global shared memory clusters” is also
a poor choice, because there is no con-
cept of a single-memory image in RMC.
These are multiple memories, with mul-
tiple memory maps and operating sys-
tems, reflecting portions of memory to
one another’s memories.

NUMA stands for non-uniform memory
access. The NUMA category contains
several different architectures, all of
which can loosely be regarded as having
a non-uniform memory access latency:
RMC, MPP, CC-NUMA, and COMA.
Despite the fact that all of these can be
described as NUMA architectures, they
are quite different. RMC and MPP have
multiple nodes and the “NUMA” part
is the inter-nodal software coherency. In
CC-NUMA and COMA, which will be
discussed later, the hardware coherency
is intra-nodal; the “NUMA” piece is
inside one node.

Why can RMC be regarded as a NUMA
implementation? The rationale is that if
a node requests some data from its own
memory, the latency is fairly small. If the
same node requests data that must be
transferred or replicated from the memory
of another node via the message-passing
hardware and software, latency is sub-
stantially longer. Therefore, loosely
speaking, you have non-uniform memory
access. However, the memory transfers
in RMC systems use software coherency,
because each of the nodes has its own
OS instance and its own memory map.
This makes the RMC “NUMA” system
quite different from a CC-NUMA node

Figure 5: Taxonomy of computer architectures

Clusters NUMA UMA (Big Bus)

MPP RMC CC-NUMA COMA
S5000 clusters SP-2 Sequent® NUMA-Q™ KSR Pyramid® Nile series

Switch S5000 with
SDI

HP T500 NCR® Bynet DEC® DG CC:NUMA SUN Sequent S5000
clusters TruCluster S3.mp

with memory
Channel

SPARCcenter Tandem® HP SPP1600 Stanford Flash HP® T500
Clusters ServerNet
Pyramid MIT Alewife DEC TurboLaser
Clusters

Sun S3.mp SPARCCenter 2000
SGI Challenge

Multiple Nodes Single Nodes

7

where a single memory is shared
between processors within a node using
hardware cache coherency. Figure 5
shows a taxonomy of the various archi-
tectures and some examples of each.

CC-NUMA means cache coherent non-
uniform memory access. CC-NUMA is
a type of NUMA but one that is quite
different from RMC. In a CC-NUMA
system, distributed memory is tied
together to form a single memory. There
is no copying of pages or data between
memory locations. There is no software
message-passing. There is simply a single
memory map, with pieces physically tied
together with a copper cable and some
very smart hardware (rather than a

backplane). Hardware cache coherent
means that there is no software require-
ment for keeping multiple copies of
data up to date or for transferring data
between multiple instances of the OS or
application. It is all managed at the
hardware level, just as in any SMP node,
with a single instance of the OS and
multiple processors. However, instead of
using a snoopy bus to maintain coheren-
cy, a directory-based coherency scheme
is employed. Figure 6 shows a 12-proces-
sor, single-node CC-NUMA system.

COMA, or Cache-Only Memory
Architecture, is a rival architecture to
CC-NUMA with similar goals but a
different implementation. Instead of

One OS Instance = One Node

CPU CPU CPU CPU

One System, With One Node, Of 3 Quads

This Is CC-NUMA Or NUMA-Q

COMM

Mem I/O

CPU CPU CPU CPU

COMM

Mem I/O

CPU CPU CPU CPU

COMM

Mem I/O

Figure 6: A 12-processor CC-NUMA node

8

distributing pieces of memory and
keeping the whole thing coherent with a
sophisticated interconnect as we did in
NUMA-Q, a COMA node has no mem-
ory, only large caches (called attraction
memories) in each quad. The interconnect
still has to maintain coherency, and one
copy of the OS still runs over all of the
quads, but there is no “home” memory
location for a particular piece of data.
The COMA hardware can compensate
for poor OS algorithms relating to mem-
ory allocation and process scheduling.
However, it requires changes to the vir-
tual memory subsystem of the OS and
requires custom memory boards in addi-
tion to the cache coherency interconnect
board.

NUMA-Q is Sequent’s implementation
of a CC-NUMA architecture. It is a CC-
NUMA architecture with a quad proces-
sor complex associated with each piece
of distributed memory. NUMA-Q means
CC-NUMA with quads. We chose to
separate four processors beside each dis-
tributed piece of the address map, and
also add a PCI bus with seven slots.
The collection of four processors, some
amount of memory, and seven PCI slots
is referred to as a quad. Multiple quads
can be joined with a hardware-based
cache-coherent connection to form a
larger single SMP node, in the same
way that processor boards are added to
a backplane of a conventional big-bus
SMP node. NUMA-Q is the architectural
description of all of Sequent’s future
large SMP nodes.

NUMA-Q is the logical growth path
for SMP. Because the cache-coherency
protocol based on the snoopy bus
becomes backplane-limited somewhere
between 12 and 32 processors, it’s neces-
sary to migrate to a more scalable archi-
tecture for hardware-based cache-
coherency. This is especially true as the
processors become more powerful and
the limits for snoopy bus cache coheren-
cy move down from 32 processors. The
best-known alternative hardware cache-
coherency protocols are based on a

directory-based cache protocol. Sequent
has determined the best variant to be the
cache-coherent, non-uniform memory
architecture employing SCI.

A NUMA-Q quad consists of four
processors, memory, and seven PCI
slots on two PCI channels. It could be
the only processing element in a system.
If this were the case, it would be a single-
node system, and the quad would cor-
rectly be described as a node. When a
system consists of multiple quads, it is
still a single-node system, since only one
instance of the OS is running over all
quads. In this case it is incorrect to refer
to any one of the quads as a node. It
should be noted that the academic com-
munity uses the term node to refer to the
smallest aggregation of processors and
memory in a CC-NUMA system. This
usage is not acceptable in the commercial
community because of the confusion
with the definition of a cluster node.

The IQ-Link™ interconnect is Sequent’s
coherent interconnect between quad
buses. This interconnect is implemented
strictly in hardware and requires no
software to maintain coherency. For the
most part, it is invisible to the software
just as caches are—being just a more
advanced form of a cache-coherent
backplane. Instead of placing 12 proces-
sor boards on a single backplane, we
plug a copper link between groups of
processors and memory. The IQ-Link
maintains cache coherency just as SMP
backplanes do. This permits a single
instance of the OS to be spread over
multiple quads.

The difference between the backplane-
based big-bus SMP nodes and a multi-
quad NUMA-Q SMP node is that the
NUMA-Q interconnect overcomes the
limitations of the single backplane and
permits the building of very large SMP
nodes. Big-bus systems are designed for
throughput, not latency. By using short
buses inside each quad, we achieve very
low latency for most accesses. IQ-Link
allows us to build very big systems with

9

multiple short, low-latency buses. The
Sequent-designed IQ-Link interconnect
offers lower latency and higher effective
throughput than any other alternative
available today. The result is better sys-
tem scalability and overall performance.

A clustered system of NUMA-Q SMP
nodes runs the same clusters software
as single-backplane SMP clusters. When
the memory-to-memory transfer mecha-
nism is added, it becomes a replicated
memory cluster with NUMA-Q nodes.
The software coherency and memory
transfer medium between nodes is likely
to be implemented with Fibre Channel.
In Sequent’s case, all of the software
used today in the software-coherent
memory transfers between S5000 nodes
(ptx/SDI and ptx/CLUSTERS) and will
be used in the NUMA-Q-based RMC
systems.

One might ask why there is a need to
build RMC systems with NUMA-Q
nodes at all, when very large NUMA-Q
nodes can be built instead. There are
two reasons, and they are the same
reasons for using clusters today: avail-
ability and scalability beyond one node.
Application availability is better for clus-
ters than for single nodes, and for many
business problems, application availa-
bility is of paramount importance.
Scalability is important because, no mat-
ter how big the nodes become, there will
always be applications that need larger
nodes. Figure 7 shows a two-node
NUMA-Q cluster system.

Latency, the key differentiator
One of the key differences between all
the architectures described here is the
programming model. Programming
differences stem directly from latency
difference. The whole point of using

Figure 7: A Replicated Memory Cluster built with two NUMA-Q nodes

One OS Instance = One Node

CPU CPU CPU CPU

One Replicated Memory Cluster System (RMC),

With Two Nodes, Each Having Three Quads

COMM
Mem I/O

CPU CPU CPU CPU

COMM
Mem I/O

CPU CPU CPU CPU

COMM
Mem I/O

One OS Instance = One Node

CPU CPU CPU CPU

COMM
Mem I/O

CPU CPU CPU CPU

COMM
Mem I/O

CPU CPU CPU CPU

COMM
Mem I/O

Shared Disk

Lock Messages

Memory to Memory Transfers

10

memory is to locate frequently-used data
in microseconds rather than the millisec-
onds it takes to retrieve it from disk. In
the case of MPPs with distributed disks,
accesses to remote disks (where the disks
are attached to a different node than the
requesting node) can be in the tens of
milliseconds.

Because disk accesses are so long,
computer designers often add a soft-
ware-coherent interconnect between
nodes of a cluster to yield what some
call “global shared memory.” The result-
ing Replicated Memory Clusters are a
type of NUMA, and the accesses to
remote memory is in the hundreds of
microseconds. This is certainly hundreds
of times faster than going out to disks
for the same data, but hundreds of
microseconds is still hundreds of times
slower than local memory speeds. Thus,
the programming model must minimize
these types of transfers by partitioning
the data as well in advance as possible.
You will note that RMC remote access-
es, disk accesses, and remote disk access-
es all involve both software and hard-
ware, while local memory accesses are
implemented completely in hardware.

Local memory accesses in big-bus archi-
tectures are implemented entirely in
hardware, they are coherent, and they
are quite fast-usually less than two
microseconds. This is why SMP program-
ming is so advantageous to application
programmers. The programmer does not
have to worry about partitioning data in
memory, because all parts of memory
are accessed from any CPU, with equally
fast times.

NUMA-Q has taken this process one
step further. Not only is the worst-case
memory access time roughly the same as
the big-bus architecture accesses, but a
majority of the accesses will be ten times
faster! This means that the average
memory access in a NUMA-Q system is
actually faster than any big-bus architec-
ture today. In addition, a 32-processor
NUMA-Q system has more memory
bandwidth than any other SMP architec-
ture today. (It should be clear by now
that NUMA-Q memory accesses are
quite different than RMC transfers, even
when RMC architectures are referred to
as NUMA.) The “Giga-bus” vendors are
touting 256-bit-wide buses and one to
three GB/s bandwidths, but these are the
end of the line for the single big-bus or
switch-based systems. NUMA-Q is the
first commercial venture into CC-NUMA
and promises to lead the industry in
achieving high bandwidth and low
latency for large SMP nodes.

Figure 8 shows the actual latency of
the containers of data on a log scale.
(Because the differences are so vast, you
can’t show them on a linear scale.) It is
interesting to translate these times from
microseconds into something we are
more familiar with: seconds. If the
NUMA-Q memory latency of one
microsecond were the same as waiting
on your PC to respond for one second,
then the RMC (NUMA clusters) would
keep you waiting two to three minutes,
a disk access would delay you three
hours, and a remote disk access six
to twelve hours.

Local DiskRMC

1mS100uS10uS1uS100nS 10mS 100mS

Big BusNUMA-Q

H/W Coherency

Remote Disk (MPP)

Hardware/Software Messages

Figure 8: A log scale showing the relative latencies of memory, Replicated Memory Clusters, and disks.

11

How NUMA-Q works
The first NUMA system was the
Butterfly machine, developed by BBN in
1981. The first operational CC-NUMA
system was the Stanford DASH. The
team working on this system took the
opportunity to study the Irix operating
system (SGI’s Unix operating system)
on a 32-processor CC-NUMA node in
1992. The Stanford team is currently
building the follow-on to the DASH,
called FLASH. One goal of FLASH is
to integrate the SMP cache-coherent
shared-memory model and the MPP
software-based cache-coherent message-
passing model into one architecture.

Sequent chose to use quads, with four
processors per portion of memory, as the
basic building block for NUMA-Q SMP
nodes. Adding I/O to each quad further
improves performance. Therefore, the
NUMA-Q architecture not only distrib-
utes physical memory but puts four
processors and seven PCI slots next to
each part. In a node with three quads,
one third of the physical memory will
be close (from a memory access latency
perspective) to four processors, and two
thirds will be “not quite so close.” This
might lead the reader to believe that two
thirds of the memory accesses will be
slow, and only one third fast. Fortunately,
without any modification of the SMP-
based applications, this is not the case.
In fact, a majority of a processor’s mem-
ory accesses will be very fast indeed, and
only a small percentage will be “not
quite as fast.” This is because of the
large local quad memory and the large
remote cache on the IQ-Link board.

NUMA-Q memory configuration
The memory in each quad is not local
memory in the traditional sense. Rather,
it is one third of the physical memory
address space and has a specific address
range. The address map is divided evenly
over memory, with each quad containing
a contiguous portion of address space.
In our example, shown in Figure 9, quad
0 has physical addresses 0-1GB, quad 1

has physical addresses 1-2GB, and quad
2 has physical addresses
2-3GB. Only one copy of the OS is
running and, as in any SMP system, it
resides in memory and runs processes
without distinction and simultaneously
on one or more processors.

To simplify descriptions hereafter, the
memory segment on the quad under
discussion will be referred to as “local
quad memory” and the memory on the
other quads as “remote quad memory.”
Therefore, memory accesses to local
quad memory are very fast; accesses to
remote quad memory are not as fast.
Access latencies to the one physical
memory space are non-uniform, which
is why NUMA-Q is a true NUMA
architecture.

The Intel® Pentium® Pro processors have
both an L1 cache and an L2 cache inside
the chip. For reasons explained later, a
majority of any processor’s L2 cache
misses will be found to be addresses
that fall into the range of the local quad
memory, and so are serviced very quickly.
The ability of the code and data accesses
to stay within a given region of address
space is called “spatial locality.” If the
address is outside the range of the local
quad memory, the IQ-Link 32MB cache
is searched. This 32MB cache is accessed
at the same speed as the local quad
memory. If the data is not found in the
IQ-Link cache (also called the remote
cache), the IQ-Link sends a request out
on the IQ-Link bus to get the data. After
the data is fetched from another quad,
it is stored in the remote cache of the
IQ-Link board of the requesting quad,
but it cannot, and is not, stored in the
memory of this quad unless the software
explicitly copies one part of memory to
another.

As an example, suppose that quad 0 in
Figure 9 needs to test and set a sema-
phore. The address is within the 1-2GB
address range so does not fall within
the range of the local quad memory on

12

quad 0. The IQ-Link in quad 0 recog-
nizes that the address on the Pentium
Pro bus is outside of the range set for
the local quad memory. It forwards the
request, via the IQ-LINK bus, to the
IQ-LINK on quad 1. Quad 1’s IQ-Link
receives the request, requests access to
the Pentium Pro bus, fetches a copy of
the data from quad 1 memory, and sends
it back to quad 0, where it is stored and
subsequently modified in the remote
cache on the IQ-Link of quad 0.

This transfer took two hops in that the
request “hopped” from quad 0 to quad
1, and the returning data “hopped”
from quad 1, through quad 2, back
to quad 0. Since the packet was not
addressed to quad 2, it is bypassed
directly from quad 2’s input to output
in about 16 nsec. The ring is uni-direc-
tional, so the returning data had to pass
through the IQ-Link on quad 2 to get
back to quad 0. From the time the
Pentium Pro on quad 0 first had the
cache miss in its internal L2 cache until
the data was returned to that Pentium
Pro and it is able to use that data, is
about 3.3 microseconds. This latency
is similar to that observed for a cache-

miss in a conventional single-backplane,
big-bus architecture but it occurs much
less frequently.

The data request in this example is for a
semaphore, and the intent is to do a test
and set. The initial request is received by
quad 1, whose memory contains the
semaphore. The IQ-link on quad 1
retrieves the data from its memory and
observes that the request is with “intent
to modify.” The IQ-Link therefore
makes a record of this intent, and also a
record of the quad address to which the
data is being dispatched, and returns
the data to quad 0. Subsequently, if a
processor on quad 1 attempts to read
this data from its own local quad memory,
the IQ-Link intercepts the request, since
it knows that the copy in that memory
location is “stale.” A request is issued
back to the last known location of the
modified data (quad 0 in this case), the
data is retrieved, and updated in memory
in quad 1. Remember that quad 0 does
not store this datum in its memory, only
in its IQ-Link cache. It cannot put it in
memory since the address for this data
does not fall into the address range of
quad 0.

Quad 0

Quad 1
IQ-LINK Bus

1GB/s Per Link

Quad 2

CPU CPU CPU CPU

IQ-LINK
Cache

Mem
0-1GB

PCI
7-slots

CPU CPU CPU CPU

IQ-LINK
Cache

Mem
0-1GB

PCI
7-slots

CPU CPU CPU CPU

IQ-LINK
Cache

Mem
0-1GB

PCI
7-slots

Figure 9: A three-quad NUMA-Q node, showing the IQ-Link bus

13

Obviously, this is a simple example,
and there are complex operations of
coherency requiring four or more hops
to retrieve data. However, it should serve
to prove that the hardware is responsible
for maintaining coherency, and the soft-
ware view is one large contiguous memory,
with a single copy of the OS. It is true
that this architecture is more complicated
than the traditional cache technologies
of single-backplane, snoopy bus systems.
However, the complexity is necessary to
overcome the bandwidth limitations of
the big-bus architecture.

Cache coherence in NUMA-Q
When one examines the transfers over
a single bus in single-backplane big-bus
SMP architectures such as that shown in
Figure 1, one realizes that some of the
transfers are I/O (between the I/O ports
and memory) and others are simply CPU
accesses to memory called “capacity
misses” or “conflict misses” caused by
the size and configuration of the L2
cache. The remainder are cache-to-
cache transfers between CPUs called
“coherency misses.”

The drawback with the big-bus architec-
ture is that all caches have to have
visibility to all transfers to maintain
coherency, so they implement a snoopy
cache protocol. As the bus is redesigned
to make it faster, the length of the bus
must shrink. An alternative is to remove
some of the traffic from this bus and free
up bandwidth in an attempt to meet
the bandwidth requirements of faster
processors. Some vendors have added a
separate I/O bus and dual-ported memory
for this purpose. This adds substantial
cost and complexity to the system archi-
tecture and only limited bandwidth
improvement. Other vendors have built
dual system buses with coherency man-
aged by a dual-ported memory and a
directory-based cache-coherence protocol.
This approach fails to deliver twice the
bus bandwidth, however, because so
much coherency activity has to cross
the memory between the buses, consum-
ing bandwidth on both buses while
increasing average latency.

In NUMA-Q, Sequent has attempted to
separate the coherency misses from the
I/O and the CPU-to-memory traffic
(capacity and conflict misses). In this
way, the CPU-to-memory traffic and the
I/O traffic can occur simultaneously on
multiple 500MB/s buses. The IQ-Link
coherency bus interconnects and moni-
tors all of the CPU-memory buses and
assures data coherency between them.
The coherency bus or “IQ-Link bus”
bandwidth has been increased to 1GB/s
per link. The CPU-to-memory and I/O
bandwidth is 500MB/S for each quad.
As you add more quads, you add more
CPU-to-memory and I/O bandwidth.

For a system with eight quads (32 proces-
sors), the CPU-to-memory bandwidth is
eight times 500MB/s or 4GB/S. With
two PCI buses in each quad, 2GB/S of
I/O bandwidth can theoretically be sup-
ported. The IQ-Link bandwidth remains
at 1GB/S per link, as it is connected to
all eight quads. However, most of its
traffic will be coherency misses, and to a
much lesser extent some “not so close”
memory fetches or capacity or conflict
misses, and even some I/O on occasion.
The ability for the I/O subsystems to be
centralized and yet still accessible from
any quad without requiring I/O traffic
over the IQ-Link is very important.

When comparing these bus bandwidths
to conventional big-bus architectures,
one must aggregate the 500MB/s quad
buses, since these are the buses carrying
the bulk of the traffic common to all
SMPs: the capacity misses and the I/O.
It would be incorrect to compare just
the IQ-Link bus to a conventional big
bus since the majority of the IQ-Link
traffic is just coherency misses. Since
the NUMA-Q architecture is designed
to support up to 63 quads under one
instance of the OS, this means that the
theoretical maximum bus bandwidth
for I/O and capacity misses is 32GB/S
(63 * 500MB/s). This compares to single
backplane speeds today in the range of
240MB/s to 1.6GB/S. The IQ-Link is a
point-to-point connection from IQ-Link
to IQ-Link, ultimately forming a ring.

14

All indications lead us to believe that the
interconnection of multiple 1GB/s links
in a ring will result in an 1.6 GB/s aggre-
gate throughput for the IQ-Link ring.

Optimizing software for NUMA-Q
Clearly, the success of Sequent’s NUMA-Q
architecture depends on the following:
1. The SMP applications software

does not have to be changed to get
the most performance out of this
architecture.

2. The frequency of “not so close”
accesses is substantially less than that
of “close” accesses.

3. The latency of “not-so-close” accesses
is very short.

4. The bandwidth of the IQ-Link is
much greater than that required for
large OLTP, DSS, and business
communication solutions.

How might SMP software developers
optimize their software for NUMA-Q?
One could make software changes to
accommodate NUMA-Q if points two,
three, and four above weren’t true. If
points two, three, and four, are true,
however, then the fact that a small
percentage of accesses take longer than
the rest can largely be ignored by pro-
grammers, in the same way that the
working of caches is ignored. Clearly,
tuning by programmers for cache size
and set associativity can and do yield
some incremental performance, in the
same way tuning to a NUMA-Q archi-
tecture can yield some small incremental
performance. However, the important
point is that most of the potential system
performance can be achieved without
changing SMP applications software for
NUMA-Q.

In designing the IQ-Link interconnect,
Sequent ran many tests using Oracle
and Informix applications. These tests
showed us that these software programs
demonstrate good code and data spatial
locality (i.e., they didn’t randomly hop
all over the address map for code and
data). In an eight-quad node, a great
deal more than an eighth of the accesses
are found in local quad memory.

Specifically, over 51 percent of the L2
cache misses are found in the local quad
memory on an eight-quad node, and an
additional 30 percent are found in the
32MB remote cache on the IQ-Link.
The remaining 19 percent of the L2
cache misses may require remote memory
access. This proves that point two above
is true.

Memory latencies in NUMA-Q
What of the memory latencies in the
NUMA-Q architecture? In traditional
single-backplane big-bus SMP architec-
tures, the average memory latency is
about two micro-seconds. This is miti-
gated to some extent by large (2MB)
L2 caches, but nonetheless plays a signif-
icant role in the overall performance of
the node. The reason that the latency is
much larger than the access time of
DRAMS (about 60ns)is that the request
has to go through the process of missing
in the L2 cache on the processor board,
requesting access to the backplane bus,
getting onto the backplane bus and into
the queue for a memory access, over to
the memory board, and ultimately
returning with the data.

In a NUMA-Q node, an access to local
quad memory is roughly ten times faster
than a memory access in a single back-
plane SMP node. This is because: 1) the
memory is close to the processors, 2)
there are just four processors, 3) there
is no backplane between the processors
and the local quad memory, and 4) the
bus between the processors and the
memory can operate at much higher
speeds. The latency of the local quad
memory can be as low as 180ns from
L2 cache miss until the data is returned
to the processor.

After the latency of local quad memory,
our next concern is with the latency of
the IQ-Link 32MB remote cache, which
is the first place searched for data whose
address does not fall into the range
offered by the local quad memory. This
remote cache is accessed simultaneously
with, and at the same latency as, the
local quad memory, thus providing an

15

additional 32MBs of memory that is
also ten times faster than memory in the
single-backplane big-bus architectures.

Finally, we must know the latency of a
remote quad memory access. We must
understand both the minimum latency
and also those things that contribute to
the maximum latency. We must under-
stand the frequencies of these different
latencies. Here we will only mention the
minimum latency for an eight-quad sys-
tem, which is 3.3 microseconds from the
processor L2 cache miss until the data is
returned. This is almost as fast as a
memory access in a single-backplane big-
bus SMP system, but occurs much less
frequently because of the 512MB-4GB
of local quad memory, and the 32MB
remote cache in each IQ-Link. Compare
this to typical single-backplane big-bus
processor caches of just 2MB-4MB.

When one sums it all up and takes
cache hit rates into account, the average
latency in a single-backplane big-bus
SMP node today is one to four microsec-
onds, whereas the same software on
the NUMA-Q node, with no changes,
would have an average latency of just
1 to 2.5 microseconds. This is one of
the reasons that applications vendors do
not have to change their SMP software
to get maximum performance from
NUMA-Q systems; the cumulative effect
of latency to remote quad memory is
very small indeed.

IQ-Link bus bandwidth
Finally, there is the bandwidth of the
IQ-Link bus. It is our expectation that
for a 32-processor, single-node running
at roughly 20,000 to 25,000 transactions
per minute, the IQ-Link is not even
30 percent utilized. This is attributable
to the efficiency of our coherency proto-
col, the inherent good spatial locality
of the applications available today
and, of course, the very high realizable
bandwidth of the IQ-Link. Sequent

expects a 32-processor NUMA-Q
node to triple our current high-end
performance.

If the applications companies subse-
quently choose to make changes that
benefit NUMA-Q (and, coincidentally,
other SMP platforms and MPP), they
might get up to 20 percent additional
performance.

The IQ-Link has a great deal of intelli-
gence built into it. It must be able to
keep track of the location of all data it
has “checked-out” from its own quad,
as well as all the data it is caching in its
32 MB remote cache. It monitors the
Pentium Pro bus and simultaneously
uses a directory-based coherence proto-
col to keep track of all requests it makes
and requests it responds to on the
IQ-Link bus. It is the go-between from
the four-state snoopy cache coherence
of the Pentium Pro bus, to the 39 state
directory-based coherence protocol of
the IQ-Link bus.

The bottom line is that the applications
software won’t have to change, because
the hardware and the operating system
work together to ensure excellent locality
and low latencies. The result is that most
of the potential performance of a
NUMA-Q node can be realized with
existing binaries. Applications companies
will modify or port their applications
only if they feel strongly about getting
the remaining small percentage improve-
ments by changing their software to
improve the locality even more. The
NUMA-Q architecture will run their
software unchanged faster than any
other SMP node available to date. Any
further tuning will just widen this per-
formance gap. It is interesting to note
that this work will also yield improve-
ments in conventional single-backplane
big-bus systems because of the large
cache sizes, and also in MPPs, where
locality of reference is the most critical
factor to scalability.

16

Summary
Sequent started commercial Unix®-based
SMP in 1983. Today, many vendors offer
Unix-based SMP platforms. Sequent is
now pioneering the next step beyond
Big Bus SMP—the NUMA-Q SMP
architecture. We believe that some day,
all high-end servers will be built using
this architecture.

Data access latency is clearly the deter-
mining factor in system performance
today. We put memory in our systems
to mitigate against disk latency. SMP
platforms in the past have provided an
easy programming model, since the
latency to all parts of memory has been
equally small. Attempts to share data
between nodes by transferring data
between the memories are successful if
the alternative is to return to disk for the
data. However, they still require substan-
tial programming changes to optimize
performance because inter-node latencies
are much larger than intra-node latencies.

The most efficient way to get high
performance and keep the programming
model simple (no data partitioning) is
to build the single nodes as large as
possible before going to a second node.
With the limitations placed on the size
of backplanes and system buses, this
cannot be done with snoopy cache and
still get to 32 or more processors. The
best way to accomplish this is to use
the directory-based cache protocols and
CC-NUMA. This has the added advan-
tages of permitting the connection of
up to 252 processors, getting enormous
memory and I/O bus bandwidth, and
still achieve average memory latencies
below any system available today. Best
of all, you don’t have to change your
SMP applications software to reap most
of the performance and out-perform
all existing big-bus SMP platforms.

Additional information
Additional white papers regarding
NUMA-Q based systems will be available
on Sequent’s web site:
http://www.sequent.com/solutions/
whitepapers/index.html#numa-q.
Implementation and Performance of a
CC-NUMA System, by Russell Clapp
and Tom Lovett. An in-depth technical
look at the cache coherence of NUMA-
Q and the expected performance. This
paper is to appear in the proceedings
of the 23rd Annual International
Symposium on Computer Architecture,
May 1996, under the title, A CC-NUMA
Computer System for the Commercial
Marketplace. The version of the paper
on the web under http://www.sequent.com/
products/highend_srv/imp_wp1.html,
replaces some of the internal engineering
terms and code names with more
widely recognized industry terms.

Considerations in Implementing a
System Based on SCI, by Robert J.
Safranek. Provides even more detail
on the NUMA-Q cache coherence. SCI
(Scalable Coherent Interface) is a IEEE
specification (1596-1992) that defines a
directory based cache coherence protocol,
the physical interface, and the packet
formats. Sequent’s IQ-Link used this as
a starting point.

Subsequent NUMA-Q White Papers will
discuss:
■ The business problems NUMA-Q

uniquely solves.
■ NUMA-Q availability features, single

points of failure and extended out-
age, and how to minimize them.

■ Hardware redundancy, hardware
support for online replacement and
insertion of key components.

■ Fibre Channel-based I/O and
multipathing.

■ The AV-Link component and
NUMA-Q availability and
manageability.

17

■ The management and diagnostic con-
troller, and virtual console software.

■ Measured performance numbers for
SMP software applications.

■ Changes to the Unix operating
system to get incremental improve-
ment from NUMA-Q architectures.

■ How the OS and application spread
out; how the database SGA will be
spread out.

■ Group affinity and soft affinity and
what effect they have.

■ Readiness of the commodity quad to
enter the data center.

For answers to your questions, email
Sequent at: numa-q@sequent.com

References
Sequent’s NUMA-Q Architecture
Whitepaper
http://www.sequent.com/products/
highend_srv/arch_wp1.html

Scalable Data Interconnect: An
Architecture For building Large Data
Warehouses That Have No Limits
http://www.sequent.com/products/
midrange_srv/symmetry/sdi_wp1.html

The Requirements and Performance of
Enterprise Computer Solutions: SMP,
Clustered SMP, and MPP Whitepaper
http://www.sequent.com/products/
midrange_srv/symmetry/smp_wp1.html

18

Corporate headquarters:

Sequent Computer Systems, Inc.
15450 SW Koll Parkway
Beaverton, Oregon 97006-6063
(503) 626-5700 or (800) 257-9044
URL: http://www.sequent.com

European headquarters:

Sequent Computer Systems, Ltd.
Sequent House
Unit 3, Weybridge Business Park
Addlestone Road
Weybridge
Surrey KT15 2UF
England
+44 1932 851111

With offices in:

Australia, Austria, Brazil, Canada, Czech Republic, France,
Germany, Hong Kong, India, Indonesia, Japan, Korea,
Malaysia, The Netherlands, New Zealand, Philippines,
Singapore, Thailand, United Kingdom, and United States.

With distributors in:

Brazil, Brunei, China, Croatia, Czech Republic, Greece,
Hong Kong, Hungary, India, Japan, Korea, Kuwait,
Malaysia, Mexico, Oman, Philippines, Poland, Russia,
Saudi Arabia, Slovak Republic, Slovenia, South Africa,
Sri Lanka, Thailand, Ukraine, and United Arab Emirates.

Sequent is a registered trademark and NUMA-Q and IQ-Link are trademarks
of Sequent Computer Systems, Inc.

Cray is a registered trademark of Cray Research, Inc.
DEC is a registered trademark of Digital Equipment Corporation.
HP is a registered trademark of Hewlett-Packard Company.
Intel and Pentium are registered trademarks of Intel Corporation.
NCR is a registered trademark of NCR Corporation, an AT&T Company.
Pyramid is a registered trademark of Pyramid Technology Corporation.
Sun is a registered trademark of Sun Microsystems, Inc.
Tandem is a trademark of Tandem Computers, Inc.
Unix is a registered trademark in the United States and other countries,

licensed exclusively through the X/Open Company Limited.

Copyright© 1997 Sequent Computer Systems, Inc. All rights reserved.
Printed in U.S.A. This document may not be copied in any form without
written permission from Sequent Computer Systems, Inc. Information in this
document is subject to change without notice.

PD-1134 6/97

